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The crystal and molecular structure of nitrosyldicarbonylbis(triphenylphosphine)manganese, Mn(NO){CO )(P(CsHjs)s)z:
has been determined from three-dimensional X-ray data collected by counter methods. The material crystallizes in space
group Dqp!%-Pbea of the orthorhombic system with eight molecules in a cell of dimensions ¢ = 18.15,b = 17.07, and ¢ = 21.86
A. The observed and calculated densities are 1.31 g/cm?. Least-squares refinement of the structure has led to a final value
of the conventional R factor of 0.073 for the 1337 reflections having F? > ¢(F%). The nitrosyl group has been distinguished
from the carbonyl groups with reasonable certainty on the basis of differences in root-mean-square amplitudes of vibration
of the various atoms., The crystal structure consists of the packing of well-separated monomeric molecular units. In the
molecular structure, the Mn atom is at the center of a trigonal bipyramid and is coplanar with the NO and CO groups; the

two P(CeHjs)s groups are at the apices of the trigonal bipyramid and hence are trans to one another.

The Mn~P distances

are 2.278 and 2.279 (£0.005) A; the Mn—N distance is 1.73 &= 0.01 A, and the Mn-C distances are 1.75 and 1.78 (=0.02) A.

Introduction

In recent years five-coordinate transition metal com-
plexes have been the object of considerable interest.!:?
As part of a continuing investigation of five-coordinate
complexes being conducted in these laboratories, we
have undertaken the determination of the structures
of the series of compounds Mu(NO)(CO)s,, Mna(NO)-
(CO)s(P(CeH5)3) and MI’I(NO) (CO)z(P(CeHs)s)g These
compounds are of particular interest because one may
study the changes in molecular geometry of a series of
presumably five-coordinate transition metal complexes,
where the metal is in the same formal oxidation state,
as the ligands are varied systematically. Also througha
comparison of the Mn-NO and Mn—-CO distances in
these compounds one should obtain information of use in
theoretical discussions of the relative amounts of mul-
tiple bonding involved in bonds between these ligands
and transition metals.

No X-ray structural information is available on any
of these complexes. However, the isoelectronic coms-
pound Fe(CO); is a trigonal bipyramid.? By analogy
to Fe(CO); and on the basis of analysis of the CO infra-
red stretching frequencies, a trigonal-bipyramidal
geometry with an apical NO has been proposed* for
Mn(NO)(CO)s. From infrared spectroscopy and di-
pole moment measurements, Mn(NO)(CO);(P(CeHs)s)
and Mn(NO)(CO)(P(CeHj)s)e were predicted® to
have trigonal-bipyramidal structures with apical tri-
phenylphosphine groups and with NO in an equatorial
position. Recently kinetic studies have been con-
ducted® on the replacement of CO from Mn(NO)(CO),
by R;P ligands. These experiments indicate that the
reaction for the addition of a second molecule of tri-
phenylphosphine

(1) E. L. Muetterties and ‘R. A. Shunn, Quart. Rev. (London), 20, 245
(1968).

(2) J. A. Ibers, Ann. Rev. Phys. Chem., 16, 375 (1985).

(3) J. Donohue and A, Caron, Acta Cryst., 17, 663 (1864), and references
therein,

(4) P. M. Treichel, E. Pitcher, R. B. King, and F. G. A, Stone, J. 4dm.
Chem. Soc., 83, 2593 (1961).

(5) W. Hieber and H. Tengler, Z. Anorg. Allgem. Chem., 318, 136 (1862).

(6) H. Wawersik and F, Basolo, private communication.
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Mn(NO)(CO)s(P(CeHs)s) + P(CsHs)g ——>
p-xylene

Mn(NO)(CO)(P(CeHs)s): + CO
is a first-order reaction—the rate depending only
upon the concentration of Mn(NO)(CO);(P(CsHs)s).
Presumably the mechanism involves loss of CO as the
rate-determining step, followed by rapid addition of a
second molecule of triphenylphosine. Usually NO is
thought to be a better =-bonding ligand than CO. If
so, such first-order kinetics would then seem to be con-
veniently explained by loss of CO from a Mn(NO)-
(CO)3(P(CeHs)s) molecule having CO and NO frans
to one another. However, neither a trigonal bipyramid
with trans NO and CO nor a tetragonal pyramid with
trans CO and NO is the structure predicted for Mn-
(NO)(CO)s(P(CsHs)s) from infrared spectroscopy. How-
ever, because of the low energy barrier for interconver-
sion among various five-coordinate structures and be-
cause the reaction is run at a relatively high temperature,
it is possible that the configuration of the reacting species
is not the same as the ground-state configuration of the
molecule and that the molecule has rearranged to some
other five-coordinate geometry before losing CO. Thus
there may be no basis for comparison of the kinetic
and infrared data. On the other hand, structural
assignments based upon the number of CO bands ob-
served in the infrared region have often been wrong.
The current kinetic work on this series of compounds
and the uncertainty inherent in spectroscopic assign-
ments of structures further encouraged us to pursue the
structures of the Mn(NO)(CO),,(P(CsHj)s), com-
pounds in the solid state. We report here on the
structure of the most stable member of the series,
Mn(NO)(CO)o(P(CsHs)s)a.

Collection and Reduction of Data
Excellent orange crystals of Mn(NO){(CO),-
(P(CeHs)s)s, prepared as previously described,® were
kindly supplied by Professor F. Basolo and Dr. H.
Wawersik. Preliminary Weissenberg and precession
photographs (Mo Kea) showed systematic absences:
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0kl when k& 5 2x, h0l when ! # 2=, and 720 when % £ 2n.
These absences are consistent with the space group
Dy’*-Pbea. The unit cell parameters at 22° are ¢ =
18.147 £ 0.008, b = 17.071 £ 0.008, and ¢ = 21.860
=+ 0.011 A (A (Mo Kay) 0.70926 A). These parameters
were determined by a least-squares refinement of the set-
ting angles of 16 reflections which had been accurately
centered on a Picker automatic diffractometer, as pre-
viously described.” The crystal density of 1.31 g cm—3,
calculated for eight moleculeses in the cell, is in excellent
agreement with the experimental density of 1.31 g cm—3
determined by flotation.

For data collection, a crystal having approximate
dimensions 0.07 X 0.07 X 0.15 mm was mounted on a
thin glass fiber along its long axis {¢). Before data
collection began, however, the crystal was deliberately
“misset” to a completely general orientation in rela-
tion to the diffractometer coordination system so that
the possibility of multiple reflections® would be mini-
mized.

Because Mn is near the absorption edge for Cu Ka
radiation, its mass absorption coefficient is not accu-
rately known; therefore, Mo K« radiation was used
(uow ~ 45.5, umo = 5.47 cm™!, where u is the linear
linear absorption coefficient). The large unit cell
raised the possibility of overlapping reflections. To
minimize overlap, a small crystal of low mosaicity was
selected. However, it was desirable to calculate
whether any reflections would overlap for a given 26
scan range on a four-circle diffractometer.

Overlap was treated by separating it into vertical
and equatorial components., Vertical overlap will
occur when the x values for two reflections having the
same ¢ and 26 settings are not sufficiently different and
intensity from both reflections enters the counter.
If &, is taken as the vertical angular spread of the
diffracted beam, then two reflections with |Ax| > &,/
sin § should not overlap.

Similarly, two reflections having the same settings of
x and ¢ but different 26 values should not overlap if
|261 — 202\ 2 8eq + 5, where 8¢q is the equatorial angular
spread of the diffracted beam and s is the 28 scan range
(assuming a symmetric scan). For small missettings
of ¢, on the other hand, the intensity of a reflection
can be regained by missetting 20 in the opposite direc-
tion. A composite equatorial overlap expression can be
written as Aeq ~ ]2(¢1 — ¢2) cos x + (26, — 262)l. If
Ay 2 8 + 5, as mentioned above, the reflections
should not overlap. (Counter motion has been ne-
glected in this approximation.) This limit can probably
be relaxed slightly if the recorder charts are examined
visually because equatorial overlap would probably be
revealed as uneven backgrounds or abnormal peak con-
tours. Pure vertical overlap, on the other hand, would
be difficult to detect on the recorder chart because both
peaks would be centered on the same 26 value. For
this structure, values of §, = 0.6° and A, = 1.5°

(7) P. W, R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6,
197 (1967).
(8) W. H. Zachariasen, Acla Cryst., 18, 705 (1965).
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were determined from several test scans. A calcula-
tion using these parameters resulted in only seven pairs
of reflections being rejected for possible overlap out of
the 9679 intensities gathered. No indication of over-
lap for other pairs of reflections was found upon in-
specting the recorder chart tracings.

Intensities were collected on a Picker four-circle
automatic diffractometer and processed similarly to the
previously described procedure.” The diffracted beam
was filtered through a 3.0-mil Zr foil, and the intensities
were collected by the 6-26 scan technique at a take-off
angle of 1.0°. A symmetric scan range of 1° in 24
was used and the scan rate was 1°/min. No atten-
uators were used because no reflection exceeded 7000
counts/sec during the scan. Stationary-counter, sta-
tionary-crystal background counts of 10 sec were taken
at each end of the scan range and were typically 10-20
counts. The scintillation counter was 21 cm from the
crystal and had an aperture 4 X 4 mm.

Initially a unique data set having 20 < 40° was
gathered and reduced to F? and «(F?) with p = 0.04.7
An additional three forms were then generated and
collected for those reflections having F? > o(F?).
Finally a unique outer sphere of data (40° < 29 < 45°)
was collected and three additional forms were gener-
ated and collected for those reflections having F? >
20(F?). A total of 9679 intensities were recorded for
the four non-Friedel equivalent forms (hkl, hkl, Rkl
hkl). The intensities of three standard reflections,
monitored at least twice daily during the 20 days re-
quired to collect the data, remained essentially constant
throughout the run.

The data were merged to yield 4438 independent
observations of which 1337 had F? > ¢(F?). In sub-
sequent discussions reflections having F? > o(F?) are
termed ‘“‘above background,” while those having F? <
o(F?) are termed ‘“below background.” Estimated
standard deviations of the intensities were adjusted?
for the number of forms observed for a given reflection.
No corrections were made for absorption because a
test calculation indicated that the absorption correc-
tion factor (4*) only varied from 1.04 to 1.06. This
variation in A * is less than the estimated uncertainty
of the intensities themselves. Of those 1951 reflec-
tions observed more than once, 1249 had ¢.v > range and
702 had g4y < Orange; 614 reflections observed as being
above background for the form 4%l ended up being be-
low background when combined with the other three
forms of data. From the averaging of the equivalent
forms, a weighted R factor of 0.086 was predicted for a
refinement on 2

Solution of the Structure

The structure was solved from the unique data set
(while the intensities of equivalent reflections were being
gathered) by direct methods using Sayre’s equation®
in the form of a modified version of Long’s!! computer
program. Normalized structure factors were com-

(9) W.T. Robinson and J. A. Ibers, Inorg. Chem., 6, 1208 (1967).

(10) D. Sayre, Acta Cryst., 8, 60 (1952),
(11) R. E. Long, Ph.D, Thesis, part 11T, UCLA, 1965.
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puted from the equation E,2 = Fuitle 2 f,2(hkl)]1
i=1

where ¢ = 2 for 0k, %0!, and k%0 reflections, and ¢ =
1 for all other reflections. The statistical distribution of
E values is given in Table I.

TABLE 1
DISTRIBUTION OF NORMALIZED STRUCTURE FACTORS
Theoret Obsd Theoret Obsd
(E?) 1.000  1.000 |E~ >3 0.8% 0.2%
]E2 - 1| 0.968 1.037 E >2 5.0% 4.9%
{|E]) 0.798  0.727 ‘E| >1  82.0%  32.8%

Three linearly independent reflections were selected
to fix the origin of the unit cell,!? and four additional
reflections were assumed to initiate phasing. These
reflections were selected within the program on the
basis of their large values of |E;| Y |En||Eqs3/|. Of the

3

16 possible solutions, the largest value of the con-
sistency index!! was

(|Es X EvErsi
h/

“ T ElEE

)

= (.89
E;7+7z'l>

(where the average is taken over all values of #). This
solution also required the smallest number of reitera-
tions to reach self-consistency. An Z map based upon
the 203 signs from this solution clearly revealed the
Mn and P atoms and one CO group. Two cycles of
least-squares refinement!? on these atoms followed by a
difference electron density map revealed all of the re-
maining nonhydrogen atoms.

Least-squares refinement based on F was then begun,
with the weights w taken as 4F2/¢2?(F?%). The atomic
scattering factors used for Mn, P, C, N, and O were
those tabulated by Ibers,'* while those for H were taken
from Stewart, et al.®> The effects of anomalous dis-
persion were included in F,;'* Cromer’s? values of
f and f"’ for Mn and P were used. Phenyl rings were
treated as rigid groups'® (C-C = 1.397 A, 6/mmm sym-
metry) with each ring assigned a single variable tem-
perature factor. All nongroup atoms were allowed to
vibrate isotropically. No attempt was made to dis-
tinguish the N atom, and three carbonyl groups were
assumed. After two cycles of least squares, the tem-
perature factor on one ring was quite large (13 A2),
suggesting that the ring center was misplaced. A sec-
ond difference electron density map gave a somewhat
better position approximately 0.2 A away.!® Two

(12) M. M, Woolfson, “Direct Methods in Crystallography,” Oxford
University Press, London, 1961,

(13) In addition to various local programs for the CDC 3400, other pro-
grams used were local modifications of Zalkin's rForDAP Fourier program,
the Busing—Levy ORFFE error function program, Johnson's orRTEP plotting
program, and Long’s!! REL direct methods program.

(14) J. A. Ibers, ‘“International Tables for X-ray Crystallography,”
Vol. 3, The Kynoch Press, Birmingham, England, 1962, Table 3.3.1A,

(15) R. F, Stewart, E. R. Davidson, and W, T. Simpson, J. Chem. Phys.,
42, 3175 (1965).

(16) J. A. Ibers and W. C. Hamilton, Acta Cryst., 17, 781 (1964).

(17) D. T. Cromer, ¢bid., 18, 17 (1965).

(18) 8. J. La Placa and J. A. Ibers, ibid., 18, 511 (1965); R. Eisenberg
and J. A, Ibers, Inorg, Chem., 4, 773 (1865).
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additional cycles of least-squares refinement—the
latter with individual isotropic thermal parameters for
group carbon atoms—gave Ry = Z||Fy| — | F||/3|F| =
0.087 and Ry = (Sw(F, — F)}/ZwF,%"* = 0.071.
Hydrogen atoms were then included as fixed con-
tributions to F, (C-H = 1.084 A,® with each H atom
assigned the temperature factor of the C atom to which
it was bonded); and one cycle of least-squares refine-
ment allowing the Mn atom to vibrate anisotropically
and all other atoms isotropically then gave R; = 0.076
and R, = 0.061. Next, all nongroup atoms were al-
lowed to vibrate anisotropically (154 parameters).
Two cycles of refinement resulted in convergence with
R, = 0.072 and R, = 0.058. An R factor ratio test®
indicated that this improvement was significant at the
0.59% level.

A plot of the thermal ellipsoids of the atoms after
anisotropic refinement showed that one of the ‘‘car-
bonyl” C atoms was a thin disk of very different shape
from the other two C atoms (Figure 1). The root-mean-
square (rms) amplitudes of vibration of the atoms
(Table II) indicated that this difference was not an arti-
fact of the perspective view. The minimum rms am-
plitude for the different carbonyl C atom was only
about one-third as large as the minimum rms ampli-
tudes for the other two carbonyl C atoms. However,
the standard deviation of the minimum rms amplitude
for the unusual atom was large (0.10 A), and this
amplitude was thereby only one standard deviation
smaller than the corresponding amplitudes for the other
two atoms. The rms amplitudes of vibration along the
intermediate and along the long axes of the thermal
ellipsoids for the three atoms were more nearly equal.
Moreover, the “Mn—-C’” bond length for the unusual
atom was 0.07 A (30) less than the shorter of the other
two Mn-C bonds. Therefore, this unique ‘‘carbonyl”
group was taken to be the nitrosyl group. Two addi-
tional cycles of anisotropic refinement with the N
scattering factor assigned to the presumed N atom
gave R; = 0.073 and R, = 0.057 for the 1337 reflec-
tions having F? > ¢(F?). This change in the weighted R
factor is significant® at the 19, level. A plot of the
thermal ellipsoids after the above refinement (Figure 1)
now showed a more reasonably shaped N atom. The N
atom was now larger, as would be expected from the
additional scattering power. Also, this model resulted
in similar ratios among the minimum, intermediate,
and maximum rms amplitudes for each of the three
atoms, and the standard deviations of the amplitudes
were similar for all three atoms. The root-mean-square
amplitudes of vibration obtained by these two models
are given in Table II and the relevant distances ap-
pear in Figure 1. However, the major axes of the ther-
mal ellipsoids of N and C are not oriented perpendicu-
larly to the Mn—N or Mn—C bonds in either model as

(19) Group refinement of the orientation angles of phenyl rings will con-
verge rapidly even when angles are off by 30-40°. However, the fractional
coordinates of the center of mass of the ring must be determined more ac-
curately. Errors of 0.2 A may result in nonconvergence or very slow con-
vergence of the group.

(20) A. Langseth and B. P. Stoicheff, Can. J. Phys., 34,/350 (1956).

(21) W, C. Hamilton, Acta Cryst., 18, 502 (1965).



1578 Jounx H. ENEMARK AND JAMES A. IBERS

Model I

Figure 1.—View of the Mn(NO)(CO); plane after refinement as
Mn(CO); (model I) and refinement as Mn(NO)(CO). (model 1I).
The C-Mn~C angles for model I are the same as the correspond-
ing C—-Mn-C and C-Mn—-N angles in model II.

TaABLE II
RoOT-MEAN-SQUARE AMPLITUDES OF VIBRATION (A)®
————Minimum——— ——Intermediate—— ——Maximum—-—
Atom Iy 11¢ ° 11° Iy II°

Mn 0.190(5)% 0.192 (5) 0.222(5) 0.216(5) 0.237(5) 0.235(
P, 0.193(8) 0.192(8) 0.209(8) 0,207 (8) 0.228(7) 0.227(7)
P;  0.194(8) 0.191(8) 0.205(8) 0.208(8) 0.218(8) 0.217(8)
C 0.14(4) 0.14(4) 0.20(3) 0.19(3) 0.25(3) 0.25(3)
C:  0.14(4) 0.13(4) 0.20(3) 0.20(4) 0.24(3) 0.24(3)
“N’* 0.05(10) 0.17 (2) 0.17 (3) 0.24 (2) 0.25(3) 0.33(2)
O 0.20(2) 0.20(2) 0.27(2) 0.27(2) 0.39(2) 0.39(2)
0: 0.22(2) 0.21(2) 0.27(2) 0.27(2) 0.37(2) 0.37(2)
0; 0.19(2) 0,15(3) 0.25(2) 0.28(2) 0.36(2) 0.40(1)

@ Figures 1 and 2 provide an indication of the directions of these
principal axes of vibration. ° From refinement of the model
assuming three CO groups. ¢ From refinement of the final
model containing one NO group and two CO groups. ¢ Stand-
ard deviations of the last significant figures are given in paren-
theses here and in subsequent tables.

might be expected from chemical intuition and as is ob-
served for the O atoms. More disturbing is the length-
ening of the Mn—N bond by 0.04 A (~30) to 1.73 A,
so that the presumed Mn-N distance is now only 0.02
A (1o) less than the shorter of the Mn-C distances.
It appears, therefore, that in this structure, with the
data at hand, N cannot be unambiguously distinguished
from C, and a disordered structure cannot be completely
eliminated. However, model II (one NO and two CO
groups) is preferred over model I (three CO groups)
on the basis of the shapes of the thermal ellipsoids of
the atoms and the “Mn—C” bond distances resulting
from refinement of the two models. This model is also
preferred from an R factor ratio test. However, an R
factor ratio test assumes only random errors in the data,
and such may not be the case here, as the final weighted
R factor is higher than predicted (see below).

The average standard deviation for an observation of
unit weight for the 1337 reflections used in the refine-
ment is 1.43 (theory 1.0) and

Swl|F,2 — F2? /2
Ry = (ll‘zw—4l> = (.114

(for the refinement based on F). This compares with
0.086 predicted from merging the equivalent forms of
data. Since the refinement did not proceed as far as
predicted, it was thought that the data set might have
been affected by secondary extinction. Several low-
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angle reflections were examined for possible extinction,
and an extinction correction®® was determined for
several low-order reflections of high raw count which
had ]F,, < ’Fc . A structure factor calculation includ-
ing the correction improved these reflections but made
the agreement for several other large F values much
worse and R, increased slightly to 0.058. A cycle of
least-squares refinement which included a variable ex-
tinction parameter did not improve the agreement; in
fact, the converged value of the extinction parameter
was so small as to have a negligible effect on the data.
Consequently, it was concluded that extinction was not
an important effect in this crystal.

A final structure factor calculation on all 4438 reflec-
tions gave Ry = 0.323 and R, = 0.070. If reflections
with F, = 0 were omitted, then R; = 0.189 and R, =
0.070. No reflection with F, < ¢(#) had £, > 1.5¢(F).

The large value of R, for all of the data is undoubtedly
due to the large number of very weak reflections present
in the data. The number of reflections with F? >
o(F?) would certainly have been greater if a larger
crystal had been used. However, a larger crystal would
have increased the problem of overlapping reflections
because of the greater width of the peak profiles and
would also have necessitated an absorption correction.
Even so, it would probably have been preferable to
have used a larger crystal for data collection.

The values of 10}FO and 10|F,| (in electrons) are
given in Table III. In a final difference electron den-
sity map from which all atoms have been subtracted,
the highest peak is a random noise peak of 0.40 e A3,
The clean difference map is further justification for the
refinement of the phenyl rings as rigid groups with iso-
tropic carbon atoms. Of the 203 E values used to
solve the structure, 202 had the same sign as the final
values of F,; the one incorrect sign was found to be a
reflection whose intensity was mispunched by the dif-
fractometer and actually had |E| << 1.7. The final
atomic and group parameters appear in Table IV, and
Table V shows the derived fractional coordinates of the
group carbon atoms.

Description and Discussion

The numbering scheme and a perspective view of the
molecule are shown in Figure 2. The size and shape
of the atoms are determined by the vibrational ellip-
soids associated with the final anisotropic thermal
parameters and the perspective view. Phenyl C atoms
have been made artificially small for clarity. Root-
mean-square amplitudes of vibration appear in Table
II and their directions can be deduced from Figure 2.
Interatomic distances and angles computed from the
final atomic parameters of Table IV are shown in
Tables VI and VII, respectively. Estimated standard
deviations for the distances and angles were derived
from the inverse least-squares matrix from the final
refinement. Selected distances and angles are also
indicated in Figures 1 and 2.

From Figure 2, it is readily apparent that the co-

(22) W. H. Zachariasen, Acia Cryst., 16, 1139 (1963).
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TaBLE IV
FinaL AtoMic AND GROUP PARAMETERS
a
Atom x ¥ z 104811 104833 10484 104812 104812 104823
Mn 0.4104 (1) 0.3176 (1) 0.6471 (1) 32 (1) 29 (1) 18 (1) -3(1) 0(1) -3()
P, 0.4385 (2) 0.2554 (2) 0.5579 (2) 29 (2) 28 (2) 17 (1) —-3(@2) —1(1) —-1(2)
P, 0.3919 (2) 0.3978 (2) 0.7289 (2) 28 (2) 26 (2) 17 (1) 1(2) —1(1) —-2(1)
G 0.4938 (9) 0.3711 (8) 0.6362 (8) 36 (8) 17 (7) 14 (5) 6 (7) 1(6) —2(5)
C. 0.3282 (10) 0.3510(9) 0.6141(7) 24 (9) 19 (8) 19 (8) 9 (6) —2(5) —6(5)
N 0.4127 (7) 0.2332 (6) 0.6907 (5) 38 (5) 58 (6) 20 (3) —~13(6) 13 (4) —-84)
O 0.5482 (7) 0.4052 (7) 0.6307 (8) 32 (6) 51 (7) 55 (6) —15(5) 9 (5) —13(5)
(073 0.2734 (7) 0.3735(7) 0.5947 (6) 39 (7) 74 (8) 32 (4) 22 (6) —5(4) —-8(4)
O3 0.4120 (7) 0.1756 (6) 0.7205 (5) 92 (7) 32 (6) 25 (4) —14(6) —1(5) 15(4)
b
Group Xe Yo Zo 8 € 7 B: B Bz By Bs Bs

R,
R:
Rs
Ra
Rs
Rs

¢ x, ¥, and 2z are in fractional coordinates,
2kIB82)].

0.6090 (4) 0.2038 (4) 0.5465 (3)
0.4014 (3) 0.3577 (4) 0.4368 (4)
0.3570(3) 0.0906 (4) 0.5317 (3)
0.2606 (4) 0.3502 (3) 0.8210(3)
0.5322 (4) 0.4123 (4) 0.8187 (3)
0.3479 (4) 0.5762 (4) 0.6939 (3)

2.935 (14)
~0.177 (8)

1.183(9)
—0.768(9)
—3.122 (8)
—1.480 (8)

—2.169 (6)
—2.577(9)
—2.525 (6)
—2.281 (8)
—3.084 (8)

2.600 (6)

Thermal parameters are in the form:
The standard deviations of the least significant figures are given in parentheses.
of the group centers.

3.257 (13) 8.5 (4)
—1.899(7) 3.9(4)
—2.938(7) 3.2(4)
1.976 @) 2.8(4)
2.471(6) 3.9 (4)
—2.864 (7) 3.7(4)

6.0 (4)
5.4 (4)
4.2(4)
5.9 (4)
6.2 (5)
4.6 (4)

5.6 (5)
7.2 (5)
4.2(4)
6.6 (5)
7.8(6)
5.7 (4)

5.6 (4)
7.4(5)
4.3(4)
4.9 (4)
6.5(4)
5.0 (4)

6.3 (5)
7.7 (5)
5.0 (4)
5.8 (5)
7.0(5)
5.6 (4)

4.3 ()
6.1(5)
3.9(4)
5.2(4_)
5.3
4.8(4)

exp — (h*Bu + k2B + 1285 + 2hkB1; + 2hIB1s +

b x,, ¥, and s, are the fractional coordinates

inA?of atom4ina givenring. The ringsare numbered so that C; is attached to P; Cuis para to C.

The angles §, ¢, and ¢ (in radians) which bring about alignment (except for translation) of an internal coordinate

system within the ring with a fixed external coordinate system are those previously described.’® B is the isotropic thermal parameter
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< 0.5356 (6)
C 0.5800 (8)
Cs 0.6533 (5)
Cs 0.6823 (6)
Cs 0.6380 (8)
Ce 0. 5646 (5)
C 0.4190 (7)
Ce 0.4008 (7)
Cs 0.3827 (5)
Cu 0.3838 (8)
Cs 0.4025 (8)
Co 0.4201 (5)
o) 0.3938 (7)
Ce 0.4257 (4)
Cs 0.3889 (6)
Cs 0.3202 (7)
Cs 0.2883 (4)
Co 0.8251 (6)

0.2281 (14)
0.2550 (8)
0.2307 (9)
0.
0
0

[ 2N e 3N e B en B o B o

=R elNelole Nl

Inorganic Chemistry

TaBLE V

DERIVED PARAMETERS FOR GROUP CARBON ATOMS¢

R

1795 (14)

1526 (8)
1769 (9)

Re

.3122 (7)
.2760 (4)
.3215 (8)
.4031 (7)
4303 (4)
.3938 (7)

Rs

.1612 (6)
.1041 (7)
.0335 (5)
.0200 (6)
L0772 (7)
.1478 (3)

[N ool

[ e le e N o]

0.

2z

5507 (5)
.5029 (4)
.4988 (4)
.5424 (6)
.5901 (4)
.5043 (4)

L4879 (5)
.4328 (8)
.3816 (4)
.3857 (5)
.4408 (7)
.4919 (5)

5422 (5)
L5050 (4)
.4944 (4)
5212 (5)
5584 (4)
5689 (4)

% ¥
Ry
C 0.3197 (6) 0.3687 (9) 0.7827 (5)
C, 0.2600 (6) 0.3262 (6) 0.7599 (4)
Cs 0.2008 (6) 0.3077 (8) 0.7982 (6)
Cs 0.2015 (6) 0.3316 (10) 0.8593 (5)
Cs 0.2612 (6) 0.3741 (6) 0.8820 (3)
Cs 0.3204 (6) 0.3927 (7) 0.8438 (5)
Rs
Cy 0.4719 (5) 0.4081 (7) 0.7791 (4)
Cs 0.5007 (7) 0.4809 (5) 0.7957 (5)
Cs 0.5610 (7) 0.4851 (5) 0.8354 (6)
Cs 0.5924 (5) 0.4165 (8) 0.8583 (4)
Cs 0.5636 (7) 0.3437 (6) 0.8417 (5)
Cs 0.5034 (7) 0.3395 (5) 0.8021 (5)
Rg
Cy 0.3655 (7) 0.4989 (5) 0.7089 (4)
Cq 0.2998 (6) 0.5320 (6) 0.7299 4)
Cs; 0.2823 (5) 0.6093 (7) 0.7148 (4)
Cy 0.3303 (8) 0.65635 (5) 0.6788 (5)
Cs 0.3960 (6) 0.6204 (6) 0.6579 (4)
Cs 0.4136 (5) 0.5430 (7) 0.6729 (4)

@ Estimated standard deviations are derived from those of the group parameters and are meant to be used in error analyses on inter-ring
distances. Intra-ring C-C = 1.397 A,

Figure 2, —Perspective view of the Mn(NO)(CO)(P(C¢Hp )z
molecule. Phenyl C atoms have been made artificially small for
clarity. The size and shape of the other atoms are determined by groups.

their final anisotropic thermal parameters.

TaABLE VI
INTERATOMIC DISTANCES (A)

Atoms Distance Atoms Distance
Mn-P, 2.278 (5) Ci-0O4 1.15(2)
Mn-P, 2.279 (5) Co-0, 1.15(2)
Mn-N 1.73(1) N-O; 1.18(1)
Mn-C, 1.78 (2) P-C; 2.80 (2)
Mn-C, 1.75(2) P-C, 2.86 (2)
Mn-O, 2.94 (1) P-N 2.96 (1)
Mn-0, 2.90 (1) Py-Cy 2.78 (2)
Mn—03 2.91 (1) P2_C2 2.88 (2)
P-R,Cy® 1.83(1) P-N 2.96 (1)
P1-R,Csy 1.85(1) P,~P, 4.540 (6)
P-R;Cy 1.83(1) Ci-N 3.02 (2)
Py-R4Cy 1.83 (1) Co—N 3.03 (2)
P-R;Cy 1.83 (1) Ci-C, 3.06 (2)
Po-RCy 1.84 (1) 01-0q 5.08 (2)

0,-0s 5.03(2)
0,—0;3 5.03(2)
¢ R;Cy means C; on group R;.
TaBLE VII
Boxp ANGLES (DEG)

Atoms Angle Atoms Angle
P;-Mn-P, 170.2 (2) P,-Mn-C,; 86.2 (5)
Ci—-Mn-C, 120.0 (7) P1~-Mn-C, 89.4 (5)
C—-Mn~N 118.7 (7) P-Mn-~-N 94.5 (4)
Co—Mn—-N 121.3(7) P,-Mn-C, 85.5(5)
Mn-C-0O, 178.2 (18) Po-Mn-C, 90.1(5)
Mn—-Co—Oq 177.4 (17) Py-Mn-N 94.1(4)
Mn-N-O3 178.0 (13)

RiC-Pi-RoC:  104.3(6) R Ci-P-R:Ci  102.1(5)
RiCi-P-R,C: 100.8(8)  R.Cr-PrRel:  102.7 (6)
R.Ci-P=R;C 102.7(5)  RsC~Pr-RsC;  105.0 (6)

ordination symmetry about the Mn atom is nearly
trigonal bipyramidal with trans triphenylphosphine
There is a very good plane passing through
the Mn atom and the NO and CO groups. The equa-



Vol. 6, No. 8, August 1967

tion of the weighted least-squares plane through these
atoms is 3.44x — 9.12y — 18.01z — 13.14 = 0, and the
maximum deviation of any atom from this plane is
0.03 A for O,. Although no symmetry is required of
the molecule by the space group, the effective coordi-
nation symmetry is m, with the mirror plane passing
through the Mn atom and the NO and CO groups, and
perpendicular to a vector between the two P atoms.
Even if the phenyl rings are included, the symmetry is
still very nearly m because the rings on the two P
atoms are essentially in an eclipsed conformation. The
phenyl rings are staggered with respect to the NO and
CO groups. However, the effective coordination sym-
metry is not mm2, the highest symmetry possible for an
MXYVY,Z, complex. The two triphenylphosphine groups
are bent away from the NO group but preferentially to-
ward C,, so that the P-Mn-P angle is 170.2°. This
distortion preserves the equatorial mirror plane but
destroys the twofold axis along the Mn—N bond. Thus,
the average P-Mn—-C; angle is 85.8°, the average P-
Mn-C, angle is 89.8° and the average P-Mn~N angle
is 94.3°, all =0.5°.

The average Mn-P bond distance of 2.278 A com-
pares well with 2.28 A found in Mn,H(CO)s(P(CeHs)s). 2

The average Mn-C distance of 1.77 A is slightly
shorter than the average Mn~C distances of 1.823 and
1.836 A in the six-coordinate compounds Mny(CO)yp?*
and HMn(CO)s;,® but similar to the average Fe-C
distance of 1.79 A in Fe(CO);.* An Mn-N distance of
1.73 A is on the long end of the range observed for first-
row transition metals. Values from 1.57 to 1.73 A
have been reported® for Fe-NO bonds. The N-O
distances of coordinated NO range from 1.10 to 1.26
A% The N-O distance of 1.18 A reported here com-
pares favorably with the average N-O distance of
1.19 A found for the six chemically similar NO groups in
Roussin’s black salt.?® The C-O distances of 1.15 A are
similar to values typically found for carbonyl derivatives
of transition metals. Triphenylphosphine distances and
angles are similar to those observed in a large number of
complexes.

It is interesting to note that there is little difference
between the final Mn-N and Mn-C distances. The
Mn-N distance of 1.73 A is 0.04 A (2¢) shorter than

(23) R.J. Doedens, W. T. Robinson, and J. A, Ibers, J. Am. Chem. Soc.,
in press.

(24) L. F. Dahl and R. E. Rundle, Acta Cryst., 16, 419 (1963).

(25) 8.J.La Placa, W. C. Hamilton, and J. A. Ibers, Inorg. Chem., 8, 1491

(1964).
(26) G. Johansson and W. N. Lipscomb, Acta Cryst., 11, 594 (1958).
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the average Mn—C distance of 1.77 A. Only two other
structures have been done* of compounds containing
both NO and CO as ligands, namely, Fe(CO),(NO),
and Co(NO)(CO);. Both of these electron diffraction
results indicated an M-N distance 0.07 A (3¢) shorter
than the M-C distance. These differences between
M-N and M-C distances are similar to the difference
in the double- (or triple-) bond radii of N and C of
~0.05 A given by Pauling.?® Of course, these bond
distance arguments should be interpreted with caution
because of the uncertainty in the assignment of the NO
group and the possibility of molecular disorder. One
definite conclusion that can be made independent of the
assignment of the NO group is that the Mn-N-O
group is linear in this compound. Such appears to be
the rule in most transition metal-nitrosyl complexes.

The molecular packing of the complex is primarily
controlled by the bulky triphenylphosphine groups,
and van der Waals contacts between H atoms are the
shortest intermolecular distances. The volume per
triphenylphosphine group is 423 A3. This compares
with 418 A2 in Os(CO)3(P(CsHs)s)2, which has a similar
structure,?® 404 A® in square-pyramidal ReNCly(P-
(CeHs)s)s,* and 364 A2 in triphenylphosphine itself.?!
The distortion of the P-Mn-P angle to 170° may
be due to packing considerations. A similar dis-
tortion has also been observed?® in the six-coordinate
compound ((CeH;)sP)Mn(CO).(Sn(CsH;)s), where the
P-Mn-Sn angle is 176° and has been attributed to
packing considerations. Interligand repulsions may
also be partially responsible for the observed P-Mn—-P
angle. The P-N and P-C nonbonded interactions
(Table VI) are at least 0.4 A less than the sum of the
van der Waals radii of the atoms.? However, inter-
ligand repulsions alone would be expected to produce a
symmetric distortion (preserving mm2 symmetry)
with the triphenylphosphines probably distorting to-
ward the smaller nitrogen atom.
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